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Abstract 
 

We propose a model for explaining the demand for human capital based on a CES 
production function with human capital as an explicit argument in the function. The 
resulting factor demand model is tested with data on roughly 6,000 plants from the 
Census Bureau’s Longitudinal Research Database. The results show strong 
complementarity between physical and human capital. Moreover, the complementarity is 
greater in high than in low technology industries. The results also show that physical 
capital of more recent vintage is associated with a higher demand for human capital. 
While the age of a plant as a reflection of learning-by-doing is positively related to the 
accumulation of human capital, this relation is more pronounced in low technology 
industries. 
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The Demand for Human Capital: A Microeconomic Approach 

 

In recent years, there has been considerable discussion of the skill premium reflected in 

wages. In this paper, we pose a complementary question. Given the distribution of wages 

associated with differing skills, what explains the quantity of skills—that is, human 

capital—that will be chosen for a production process? 

In a way, all technical change involves a change in knowledge. It is, however, 

convenient for analytic uses to distinguish knowledge that is embodied in physical capital 

and, hence, requires investment in physical assets, from knowledge that takes other 

forms. Similarly, it is convenient to distinguish knowledge the returns to which are 

captured by labor through sellable labor skills, and which we define as human capital, 

from knowledge the returns to which are captured by the firm and, hence, may be called 

organizational capital. Human capital consists of, or is embodied in, labor skills. In 

contrast, organizational capital is firm specific knowledge. It facilitates the efficient use 

of all other inputs. Residual changes in knowledge not reflected in physical or human or 

organizational capital as defined above, are changes in industry-wide or economy-wide 

knowledge which, in turn, are primarily a function of chronological time. 

 

I.  The Model 

We assume competitive labor markets and, hence, that wage differences measure the 

differences in the marginal products of labor of various skills. Hence, the market prices 

for labor of various levels and types of skills permit us to measure the quantity of skills 

per unit of labor, or human capital per unit of labor, in common efficiency units. Within 
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this framework, variations across firms or plants in the average wage reflect differences 

in the amount of human capital used in the production process, given the market price of 

such capital. A discussion of the empirical basis that makes it reasonable to invoke these 

assumptions, at least as an approximation, appears in section II. 

 No doubt there are unique attributes to each industry’s production process that 

constrain the choice of inputs. Our objective, however, is to identify the common 

elements that define that choice. Some of these elements explain mainly the variations 

across plants in the same industries. Some hopefully also explain, at least in part, the 

variation across industry averages. We start with a simple production function with three 

inputs: pure labor L , human capital H  and physical capital K . 

 ),,( tttt KHLFY = ,        (1) 

where subscript t  denotes chronological time in years.  Pure labor is defined simply as 

human effort which varies mainly in quantity, and can therefore be approximated in 

homogeneous units such as number of employees or person hours of work. All skills are 

therefore reflected in human capital. We could, alternatively, introduce a quality index 

modifying the labor input instead of introducing human capital as a separate argument in 

the production function.  

The approach we take, while somewhat artificial, is however analytically 

convenient in that it permits us to examine explicitly complementarity and substitution 

among skills, physical capital and number of employees.  We assume that human and 

physical capital are measured in efficiency units. That is, they are adjusted for input-

augmenting skills and for technical change. Workers’ skills in specific tasks are partly a 

function of the initial endowments and training they bring to the job and partly a function 
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of experience on the job. These skills are expressed in common units through prices 

which are assumed to reflect the marginal products of labor. The measurement of 

physical capital in homogeneous units is more complex. 

 Since physical capital of different vintages is not priced concurrently and merely 

reflects historical valuations, some alternative must be used to convert it to common 

efficiency units. We assume that each vintage is associated with a unique best practice 

technology, and the efficiency of a plant’s stock of capital Kq  is a function of the average 

vintage of the stock, that is )( itKKit vqq =  where v  denotes the average vintage of the 

stock of plant i  at time t . We therefore specify the following: 

 itK v
Kit eq λ= ,         (2) 

where Kλ > 0 is a parameter that reflects productivity enhancement attributable to vintage 

and is used to convert capital into common efficiency units. For our present purpose, it 

does not matter if, for any given vintage, what is best practice capital may depend scale 

of output. Since for each vintage, regardless of scale, we have the concurrent prices of all 

capital goods, the relative prices of these capital goods will reflect their marginal 

products just as relative wages reflect the marginal products of alternative labor skills. 

 We have yet to consider disembodied technical change that is not input-

augmenting. We further decompose such change into its two principal components. One 

component is associated with industry-wide or economy-wide changes in knowledge or 

in institutional arrangements. For want of a better proxy it is assumed to be dependent on 

chronological time. The other component captures organizational learning and can be 

labeled organizational capital. Within a cross-sectional context it may be proxied, as 
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proposed by Oi (1967) and Fellner (1969), by the age of the organization.1 Organizational 

learning or capital affects the productivity of all inputs.  For example, experience 

improves the matching of employees with specific tasks, while the routinization of tasks 

that experience permits reduces, as pointed out by Penrose (1959), the level of 

managerial skills required for a given output. More recently, Bahk and Gort (1993) 

identified learning in the use of physical capital that raises the productivity of capital 

goods.   

 In principle, there is no compelling reason to assume a symmetrical shift in the 

productivity of all inputs as organizational capital accumulates. As a simplifying 

assumption, however, we model it as a symmetrical shift parameter on the premise that 

such simplification is acceptable as an approximation. Since an explicit variable is used 

to capture organizational capital, the scope of shifts in productivity attributed to 

unidentified time dependent changes in knowledge or institutional arrangements is 

greatly reduced. 

 Based on the above discussion our new production function is: 

 ),,()( itKitititittit KqHLFaGAY = ,      (3) 

where tA  refers to industry-wide or economy-wide technical change and institutional 

arrangements, ita  to the age of a plant and Kitq  to the quality of physical capital of plant 

i  at time t .   

 We next specify the production function in CES form. As pointed out by Arrow, 

Chenery, Minhas and Solow (1961) and McFadden (1963), the CES form allows for 

                                                 
1 Bahk and Gort (1993) proxied it by the cumulative output of the plant since birth. 
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different elasticities of substitution among inputs and such substitution is relatively 

simple to quantify. 

 Following the hypothesis of capital-skill complementarity formalized by Griliches 

(1969), most authors, e.g. Fallon and Layard (1975), Stokey (1996), and Krusell, 

Ohanian, Rios-Rull and Violante (2000), analyzed skill premium using a homothetic CES 

production function. The question we pose however differs from that of these authors.  

Rather than examining what determines the skill premium at the macroeconomic level, 

we take the skill premium as given and seek to explain the microeconomic (plant level) 

demand for human capital. Such demand, as we show, depends on complementarities and 

substitution among inputs. 

 Using a CES specification, plant i  has the following production function at time 

t , within a cross-section and time-series framework: 

 ( )[ ][ ] µρµρρµ β−+βα+α=
/1/

)1()( ititKitHitLittit HKqLaGAY ,   (4) 

where Kitq  is specified as in equation (2). In this production function, the parameters α  

and β , for 10 <β< , are distributional weights to indicate the relative significance of the 

inputs. The parameters µ  and ρ , for 1, <ρµ , represent the elasticities of substitution 

between inputs. That is, the substitution elasticity between labor and physical capital (or 

human capital) is )1/(1 µ− and the substitution elasticity between human and physical 

capital is )1/(1 ρ− .  

Griliches (1969) argued that human capital is more complementary with physical 

capital than with labor while Hamermesh (1993) and Krusell et al (2000) suggested that 

the substitution elasticity between labor and physical capital (or human capital) is higher 

than the substitution elasticity between human and physical capital. This, if correct, 
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implies that within the range of observed variations, complementarity between human 

and physical capital will be higher than that between labor and physical capital and, in the 

context of equation (4), we have ρ>µ . Indeed, much technical change has taken the 

form of substitution of physical capital for labor while the demand for both human and 

physical capital has risen along with increases in the complexity of production processes.  

Even apart from essential technological links between skills and physical capital, as 

investment in capital goods rises, a greater attempt will be made to protect such 

investment from misuse by employing a higher level of labor skills. Hence 

complementarity between human and physical capital follows. 

As previously noted, in a competitive market where all factor prices are given, 

profit maximization yields the following ratio of input demands as a function of these 

prices. That is, the marginal products of inputs are equal to given factor prices: 
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where Lr  is the baseline price of unskilled labor (the minimum wage) and Hr  is the price 

of human capital.    

We simply assume that the price of human capital converts it to common units 

across all plants and industries. Accordingly, equation (5) yields a first order (linear) 

Taylor series approximation around the point 0=ρ : 
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This equation allows us to examine the effects of the average vintage of the capital stock 

and of capital intensiveness on the demand for human capital. With ρ>µ , the younger 

the average vintage of the capital stock and the greater the capital intensiveness, the 

greater will be the demand for human capital.   

 We have thus far considered only organizational learning. We now introduce the 

concept of labor learning and hence the effect of such learning on human capital. 

Learning-by-doing by employees, that is the acquisition of skills through experience, can 

be expected in each successive time period from the birth of a plant. However, does it 

follow that while labor skills grow with job experience, older firms or plants will have 

more experienced workers (hence, will use more human capital)?  If labor is perfectly 

mobile and there are no informational asymmetries, the answer is no. However, these 

conditions are implausible. Current employers know what skills their employees have 

better than do outsiders. Asymmetric information renders it possible for current 

employers to outbid outsiders for the services of their experienced workers. And this is 

reinforced by seniority privileges that provide incentives for immobility on the part of 

their employees. 

 Accordingly, experienced workers are not distributed evenly across plants of 

varying age even though the acquired skills are sellable. Hence, older plants can be 

expected to employ more human capital.  In the context of our model, this is reflected in 

the distributional weights of labor and human capital which are a function of labor 

learning as proxied by plant age. However, learning is bounded in a given technology 

since the stock of knowledge and skills to be acquired through experience is finite. 
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Therefore, the effect of plant age on productivity and human capital increases at a 

decreasing rate. Hence, we have  

 
2

21/ itHitH aa
LH e λ+λ=αα ,       (7) 

where a  denotes the learning-by-doing measured by plant age, and 01 >λ H  and 

02 <λ H  are parameters that reflect the effect of labor learning on productivity. The 

parameter 1Hλ  captures the positive effect of labor learning on productivity while the 

negative value of 2Hλ  captures the bounded learning effect. With this elaboration for 

labor learning, equation (6) can be rewritten as: 
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 So far, we have analyzed the demand for human capital without distinguishing 

plants in high technology industries from those in low technology industries. The 

behavior of the demand for human capital by plants in high technology industries is, 

however, likely to differ from that in low technology industries. Advanced technology 

requires better matching of machines and skills, which reinforces complementarity 

between human and physical capital. Moreover, newer technologies require scarcer and, 

hence, more valued skills as the supply of those skills adjusts with a lag to new demand.  

Low technology, on the other hand, favors substitution of baseline labor for human 

capital.  

In the light of this, we hypothesize that complementarity of human capital with 

physical capital is higher in high technology industries than in low technology industries. 
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This implies hl ρ>ρ , where we specify hρ=ρ  if a plant belongs to a high technology 

industry and lρ=ρ  if it belongs to a low technology industry. With this hypothesis, we 

examine the effects of learning, vintage and capital intensiveness of plants on the demand 

for human capital by comparing the separate estimates for plants in high and low 

technology industries.  

If hρ>ρ1 , the effects of learning by doing, the average vintage of the capital 

stock and capital intensiveness on the demand for human capital should show the 

following: 
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That is, the effects of younger average vintage and of capital intensiveness on the demand 

for human capital should be positive and larger for high than for low technology 

industries. The intuition for this, as previously indicated, is that advanced technologies 

lead to greater dependence on skills in the use of physical capital. An equivalent 

difference in vintage entails a greater change in technology in high technology sectors 

and, hence, more demand for human capital. Similarly, an equivalent change in capital 

intensiveness leads to more demand for human capital per unit of physical capital. 

 While more rapid technical change imposes higher requirements for skills, the 

requisite skills are harder to acquire through experience. This is because past experience 

is less relevant to new technology the faster the rate of technical change. For this reason, 

learning-by-doing and experience should contribute less to the accumulation of human 

capital in high technology industries. An alternative hypothesis is that the more complex 
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the technology, the longer it takes to learn to use it. In the context of equation (7), this 

would mean a larger positive value for 1Hλ  and a larger negative value for 2Hλ . 

 Our model requires a final step. We have thus far assumed a homothetic 

production function.  However, what constitutes best practice technology may vary 

according to scale of the production process. For example, as scale increases, 

coordination problems may arise that require more managerial controls and, hence, more 

human capital. Moreover, larger scale permits greater specialization of functions and this, 

in turn, may require different configurations of skills. Consequently, a homothetic 

production function cannot be assumed.  

A simplifying modification for a non-homothetic production function is obtained 

by rewriting equation (7) as δλ+λ=αα it
aa

LH Ye itHitH
2

21/ , where 0>δ  is a parameter that 

reflects the scale effect on the production function. This specification with plant size 

measured by output is similar to an “almost homogenous” non-homothetic production 

function as shown by Sato (1977) in the sense that the factor demand ratio is a function of 

output. With this modification that captures the relationship between wages and plant 

size, the relevant demand for human capital becomes 
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This equation allows for a positive effect of scale measured by output on the demand for 

human capital. Such an effect is consistent with the empirical literature that shows a 

strong relationship between wages and plant (or firm) size. For example, Brown and 

Medoff (1989) examined six possible explanations for the possible association of wages 
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and employer size. Of the six explanations, only one was supported, namely that larger 

firms (or plants) employ higher quality labor (that is, in our terminology, more human 

capital). Dunne and Schmitz (1995) also found a positive association between wages and 

plant size. Oi (2000) attributes the phenomenon to a higher work pace in larger firms. 

This raises labor productivity and workers are compensated for higher effort with a 

higher wage.   

 

II. Data and Descriptive Statistics 

Our data are drawn from the U.S. Census Bureau’s Longitudinal Research Database for 

manufacturing plants.  We selected plants that were coded as new in the period 1973-87 

subject to two restrictions.  First, all so-called new plants were excluded from our sample 

if the cumulative capital expenditures for the first three years of the plant’s life were less 

than 75 percent of total assets at the end of the third year.  This procedure was followed 

to exclude plants that, in fact, were born prior to the first year of their recorded life or that 

may have had a prior incarnation and were miscoded as completely new.  Moreover, 

where the 75 percent criterion was not met, we did not have sufficient information for our 

analysis of the role of capital in the early life of the plant.  The second restriction 

involved inclusion of plants in our sample only if there were continuous data for them.2 

 The resulting sample left us with a non-balanced panel of 5,979 plants with 

42,194 observations for these plants in the pooled time-series and cross-section for the 

period 1973-96.  Thus, the average interval for which we had continuous data for a plant 

was roughly 7 years but ranged to a maximum of 24 years for some plants. 

                                                 
2 Plants with only one year of missing data were, however, retained in the sample. 
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 Assuming there were no coding errors, the fact that a plant remained in our record 

for less than 24 years is attributable to one of three factors: (a) it died prior to 1996, (b) it 

was still alive in 1996 but was born after 1973 (some as late as 1987), (c) the plant was 

not in the certainty sample.  The third reason requires a brief explanation.  The certainty 

of inclusion sample for inter-census years consists of plants with 250 and more 

employees plus some plants needed for adequate representation for selected product lines. 

It accounts for roughly two-thirds of the total sample in the Annual Survey of 

Manufactures.  The remainder is sampled subject, however, to the further condition that 

the composition of this portion of the sample shall change one year following each five-

year census. 

 Clearly then, factors (b) and (c) above account for most of the cases of short plant 

histories in our sample.  That is, our data do not encompass for most plants the entire life 

cycle of the plant. 

 Our next task is to examine data on average wages to see if our assumption that 

they reflect differences in the marginal products of labor rather than market imperfections 

is valid. Implicitly, we have questioned the practice of measuring the elasticity of 

substitution between capital and labor using reported wage data to capture differences in 

the price of equivalent classes of labor. 

 Table 1 shows (a) average annual wages for all employees in selected industries 

and the standard deviations of these wages and (b) the average hourly earnings of 

production workers in the same industries and the corresponding standard deviations. All 

data are restricted to the Northeast region to eliminate any effect of geographical 

differences in prices and wages. The industries were selected to obtain broad  
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Table 1 
Wage Variations within Industries in the Northeast Region, 1997* 

   Annual Wage of All Employees 
($1,000) 

Hourly Wage per Production Workers 
($) 

IND N W S CV W S CV 
2051 911 18.08 8.95 0.50 9.39 4.20 0.45
2099 298 22.59 13.63 0.60 11.38 6.22 0.55
2253 359 19.86 12.52 0.63 9.49 5.21 0.55
2273 53 20.18 8.56 0.42 9.43 3.72 0.39
2339 1,303 15.48 12.03 0.78 8.14 4.41 0.54
 2396   735 19.64 9.92 0.51 9.04 3.49 0.39
 2411    2,446  18.57  9.96  0.54 12.34 3.95 0.32
2421 1002 20.34 9.78 0.48 11.15 3.43 0.31
2511 622 19.24 9.08 0.47 9.92 3.80 0.38
2541 606 27.66 11.42 0.41 12.95 4.03 0.31
2653 356 32.84 11.30 0.34 13.28 3.24 0.24
2679 182 28.83 12.43 0.43 12.57 4.36 0.35
2711 1,561 21.68 11.23 0.52 12.27 5.19 0.42
2752 5,879 26.65 13.71 0.51 14.39 5.80 0.40
2851 306 34.95 15.72 0.45 14.77 4.80 0.32
2899 248 37.02 14.04 0.38 15.69 5.94 0.38
2951 358 42.54 17.04 0.40 19.10 9.38 0.49
2992 70 40.70 18.71 0.46 17.02 5.36 0.31
3086 182 29.05 11.97 0.41 12.60 4.15 0.33
3089 1,765 26.93 12.10 0.45 11.87 4.55 0.38
3111 141 25.05 9.84 0.39 11.15 3.40 0.30
3199 80 16.30 7.10 0.44 7.84 3.73 0.48
3272 522 27.13 11.49 0.42 12.51 4.04 0.32
3273 684 33.15 12.82 0.39 16.44 6.19 0.38
3321 149 30.28 10.92 0.36 13.99 4.44 0.32
3398 157 34.96 11.79 0.34 14.46 3.51 0.24
3444 1,046 32.47 13.09 0.40 14.89 7.01 0.47
3471 725 27.31 13.01 0.48 12.32 4.15 0.34
3544 1,471 34.50 15.46 0.45 17.22 5.29 0.31
3599 5,012 28.91 15.01 0.52 14.89 5.72 0.38
3672 295 27.65 13.33 0.48 11.87 3.81 0.32
3679 779 30.78 15.67 0.51 12.37 7.02 0.57
3714 427 27.11 14.37 0.53 13.79 5.42 0.39
3728 158 36.94 13.95 0.38 17.23 5.72 0.33
3841 420 33.99 16.77 0.49 13.51 5.33 0.39
3842 378 31.61 15.72 0.50 13.43 5.43 0.40
3993 1,168 25.36 12.44 0.49 11.47 4.76 0.41
3999 660 22.52 11.45 0.51 10.87 4.23 0.39

 
* Estimates are based on data from the 1997 Census of Manufactures at the U.S. Bureau of the Census. The two 4-digit 
industries in the Northeast region that have the largest number of plants within each 2-digit industry were selected. IND 
refers to industry; N to number of plants; W to mean wage; S to standard deviation; CV to coefficient of variation.  
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representation of the manufacturing universe and to include only industries with large 

numbers of plants so as to reduce the chance that a misleading conclusion may result 

from the idiosyncrasies of a few outliers. Specifically, we chose two 4-digit industries 

that had the largest number of plants in each of 19 2-digit categories in the 1997 Census.3 

 Table 1 reveals an enormous dispersion in wages within each industry even 

though all plants were limited to the same Northeast region. For annual wages of all 

employees, the median coefficient of variation reveals a standard deviation that is 47 

percent of the mean. Even when we restrict the data to the more homogenous category of 

production workers’ hourly wages, the median value shows a standard deviation that is 

38 percent of the mean.  

In short, is it plausible to assume that roughly 31 percent of all plants (that is 

assuming a normal distribution) are either able to pay a wage 47 percent less than the 

mean of their industries or, alternatively, are forced to pay a wage 47 percent higher than 

the mean? Does that not assume an implausible degree of imperfection in labor markets? 

When we further compared the average wage for the twenty plants that have the highest 

wages in each industry with the means for the relevant industries, the former were often 

several times larger than the latter. The data for the twenty highest wage plants in each 

industry cannot be shown because of possible disclosure of confidential information. 

However, the reported result is generally consistent with the spread in wages in many 

industries as shown in Table 1 if we consider values beyond two standard deviations from 

the mean. Given the typically high fraction of total costs in manufacturing accounted for 

by wages, how could the high wage plants survive? The most credible explanation is that 

                                                 
3  One 2-digit industry was left out because it did dot have any 4-digit industries with a sufficient number of 
plants to assure the results would not be unduly influenced by outliers. 
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the labor varies greatly in quality across plants within industries and that the differences 

in wages measure primarily differences in human capital.  

  

III. Empirical Methodology and Estimates 

Our empirical work on the demand for human capital is based on equations (6) and (10). 

We have shown that a plant’s demand for human capital is a function of age, age2, 

vintage, capital intensiveness of the plant and plant scale. The age and age2 variables 

capture the effects on the demand for human capital of, respectively, learning-by-doing 

and the limits on knowledge accumulation arising from the finite quantity of existing 

knowledge. While the input-augmenting effect of learning-by-doing raises the quantity of 

human capital employed by the plant, a concurrent process of organizational learning 

may, as discussed earlier, reduce the need for human capital thereby offsetting, at least 

partially, the positive impact of plant age on the quantity of human capital employed. The 

vintage and capital intensiveness variables are relevant because of the complementarity 

of physical with human capital. The hypothesis that human capital is complementary with 

physical capital leads, for reasons given earlier, to the further conclusion that the demand 

for human capital increases both with younger vintage and with greater capital 

intensiveness.  

The homothetic specification of a production function rules out the effect of plant 

size on the demand for human capital. However, while each vintage is assumed to have a 

unique best practice technology for a given size of plant, as a plant grows what is best 

practice may change. Thus best practice may be a function of scale. For example, larger 

plants may use more complex production technologies and, hence, require workers with 
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more specialized skills. Accordingly, a homothetic production function cannot be 

assumed and we therefore introduce plant size as a variable.  

As a further explanation of the relevant relationships, we add three control 

variables to the model to capture possible influences extraneous to the model specified 

thus far. First, a plant’s unique characteristics, although partly a function of variables 

discussed above, is also partly a function of other unidentified attributes that may govern 

the relative numbers of production and non-production workers.4 For example, some 

plants engage in research or have their own sales force and their own engineering staff 

for planning plant additions; others do not. The evidence shows that non-production 

workers, on the average, earn substantially higher wages and, within our analytical 

framework, are presumed to embody more human capital than production workers. One 

control variable, therefore, is the ratio of the plant’s non-production workers to the total 

number of employees. 

A second variable is intended to capture the unique technology of each industry 

that governs the need for human capital where, once again, uniqueness derives from 

sources other than the variables specified thus far. We therefore introduce the industry’s 

average wage (measured at the 4-digit SIC level) as a control variable for all plants in that 

industry. This variable serves us in two other ways. It eliminates the need for the use of a 

price deflator to render plant wages of different years comparable in real terms. It further 

captures the role of industry-wide learning (see equations (3) and (4)) and renders the 

introduction of a chronological time variable redundant. 

                                                 
4 Non-production workers are those who are engaged in factory supervision, sales, sales delivery, 
advertising, credit collection, installation and servicing of products, clerical and routine office functions, 
executive, purchasing, financing, legal, professional, and technical personnel. 
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Finally, we introduce regional dummies for four geographic regions (Northeast, 

Midwest, South and West) to control for regional differences that may produce 

differences across geographic regions in the relation of wages to the implied index of 

“real” human capital.  

Our empirical model has key features distinct from those in the existing literature. 

First, complementarity between human and physical capital is estimated directly without 

having to estimate elasticities of substitution from unreliable input price data. Second, we 

explicitly measure the effect of plant size on the demand for human capital. Third, 

learning and vintage effects on the demand for human capital are explicitly measured 

consistently with our theoretical model. Fourth, we examine differences in the roles of all 

variables depending on whether the plant is in a high or low technology industry. 

We now test the following specification based on equations (6) and (10), but with 

the three additional control variables discussed above: 

 ityitkitvitaitait ykvaah lnlnln 2
20 γ+γ+γ+γ+γ+γ=  

itritrrtwitl uDwl +γΣ+γ+γ+ =
3

1lnln ,     (11) 

where h  is human capital measured by the plant’s average wage; a  is the plant’s age 

measured in years since birth; v  is weighted average vintage of the capital stock with 

higher values for more recent vintage; k  is capital intensiveness measured by LKk /=  

where K  stands  for gross stock of physical capital and L  for the number of employees; 

y  is output measured by shipments; l  is non-production worker intensiveness measured 

by the ratio of non-production workers to total employment; w  is average wage of the 

relevant 4-digit SIC industry; rD  are regional dummies. The subscripts i  and t  refer to 

the plant and chronological time in years, respectively. The measure of the industry’s 
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average wage is based on the NBER-CES Bartlesman-Becker-Gray database. The capital 

variable is measured by cumulative gross investment streams from the birth of a plant to 

t  in 1987 dollars, deflated with a GDP deflator as shown in the NBER-CES Bartlesman-

Becker-Gray database. 

 We first estimate equation (11) without non-production worker intensiveness and 

regional dummy variables. We then add variables in our estimation, one by one. With the 

plant size variable, equation (11) is estimated using two-stage least squares for the pooled 

time-series and cross-section data. This is because plant size measured by output is itself 

an endogenous variable. Shipments are estimated as a function of gross stock of physical 

capital and number of employees with a log-linear specification where shipments and 

capital are deflated with a GDP deflator. An alternative measure of plant size, the average 

total number of workers over the plant’s life span, was also used. This alternative 

measure is, in one sense, less appropriate but avoids the problem of endogeneity.  

 The results for the two-stage least squares estimation of equation (11) are shown 

in Table 2. The tests for heteroskedasticity reject the null hypothesis of homoskedasticity. 

Accordingly, the results shown in Table 2 were estimated with the feasible generalized 

least squares (FGLS) specification and that t-values are heteroskedasticity-corrected. 

Because the data are predominantly cross-sectional and the panel of plants is highly 

unbalanced, serial correlation is most unlikely to be important and a Durbin-Watson 

statistic is not shown.  

The results in Table 2 strongly support the predicted relations. They indicate that 

all the coefficients of the explanatory variables are associated with high t-values and  
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Table 2 

 Explanation of Demand for Human Capital* 

 
Demand for Human Capital  Independent 

Variables (i) (ii) (iii) (iv) (vi) 
 
Intercept 
 
Age 
 
Age2 

 
Vintage 
 
Log (k) 
 
Log (w) 
 
Log (y) 
 
Log (n) 
 
Log (l) 
 
Northeast 
 
Midwest 
 
South 
 
 

2R  

 
2.1516 
(43.04) 
0.0098 
(6.71) 

-0.0001 
(-1.44) 
0.0245 
(33.92) 
0.0739 
(65.17) 
0.6552 
(89.79) 
0.0359 
(29.47) 

 
 
 
 
 
 
 
 
 
 
 

0.65 

 
3.1457 
(65.98) 
0.0169 
(12.97) 
-0.0002 
(-3.00) 
0.0267 
(41.14) 
0.0682 
(58.66) 
0.5396 
(78.61) 
0.0360 
(27.33) 

 
 

0.1168 
(49.39) 

 
 
 
 
 
 
 

0.69

 
2.2720 
(44.92) 
0.0100 
(6.87) 

-0.0001 
(-1.05) 
0.0243 
(33.39) 
0.0779 
(69.08) 
0.6473 
(87.83) 
0.0387 
(31.98) 

 
 
 
 

-0.0129 
(-2.14) 

-0.0822 
(-13.98) 
-0.1307 
(23.76) 

 
0.66

 
3.2284 
(66.83) 
0.0171 
(13.19) 
-0.0002 
(-2.78) 
0.0266 
(40.87) 
0.0718 
(61.88) 
0.5349 
(77.33) 
0.0379 
(28.91) 

 
 

0.1097 
(46.33) 
-0.0242 
(-4.29) 

-0.0711 
(-12.72) 
-0.1148 
(-22.25) 

 
0.69 

 
3.1892 
(66.15) 
0.0175 
(13.59) 
-0.0002 
(-2.89) 
0.0263 
(40.55) 
0.0797 
(69.94) 
0.5375 
(78.19) 

 
 

0.0448 
(34.56) 
0.1093 
(47.26) 
-0.0247 
(-4.39) 

-0.0711 
(-12.786 
-0.1163 
(-22.64) 

 
0.70 

 
* Estimates are based on data from the LRD at the U.S. Bureau of the Census.  
Heteroskedasticity-corrected t-values are in parentheses.  
Dependant variable is log (average wage). The sample consists of 5,979 plants for the periods 1973-96 that 
were born after 1973. For the independent variables, k  is capital intensiveness measured by capital stock 
over total employment; w  is average wage of the relevant 4-digit SIC industry; y is plant size measured 
by predicted value of shipments; n  is alternative size variable measured by the average total number of 
workers over the plant’s life span; l  is non-production worker intensiveness measured by the ratio of non-
production workers to total employment. West is used as a base for regional dummies.  
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significant at the one percent level. Most coefficients are quite stable and consistent 

across alternative specifications. The results of Table 2 may be summarized as follows: 

(a) Learning-by-doing, measured by the number of years from the birth of plants, shows a 

positive effect on the demand for human capital in all five equations in Table 2. The 

results point to a one to two percent rise in human capital per year of plant life. Learning-

by-doing, however, increases the demand for human capital at a decreasing rate as can be 

seen from the negative coefficient of age2.  

(b) Vintage and capital intensiveness have a positive effect on the demand for human 

capital. A one percent change in the average vintage of the capital stock is associated 

with about a 0.025 percent change in the demand for human capital. The highly 

significant coefficient of capital intensiveness strongly supports the conclusion of 

complementarity between human and physical capital. 

(c) The coefficient of plant size, whether measured by output or by the average number of 

workers over the plant’s life, was consistently positive. The appropriate production 

function appears to be non-homothetic. 

 (d) The average wage of the relevant 4-digit SIC industry is positively related to human 

capital at the plant level – a result that is hardly surprising. Excluding this variable and, 

instead, deflating the dependant variable by the GDP deflator reduces the 2R  but leaves 

the signs and approximate coefficient values for the other variables largely unchanged. 

Similarly, the regional dummies are generally significant and point to somewhat higher 

wages in the West.  

We next test equation (11) with decomposition of plants into high and low 

technology industries, based on equations (9) and (10). The results of two-stage least 
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squares estimation for equation (11), with decomposition of plants into high and low 

technology industries, are shown in Table 3. Two methods were used for distinguishing 

between high and low technology industries. First, we used an index based on Hadlock, 

Hecker and Gannon (1991). This classification is based on 3-digit SIC data on the 

proportion of total employment in R&D. Plants classified as being in low technology 

industries consisted of 4,317 plants and those in high technology industries 1,787 plants. 

The results with this classification of high and low technology industry are designated as 

equation (i) in Table 3.  

An alternative measure of the industry technology index was based on the 

coefficient of the time variable for the following specification:  

),( tPV jtjt Ψ= ,        (12) 

where jtV  refers to total value-added in industry j  at time t ; jtP  to production worker 

hours in industry j  at time t ; t  to chronological time in years. The information is 

derived from the NBER-CES Bartlesman-Becker-Gray database.  The regression 

estimates use time-series data for each U.S. manufacturing industry, at the  

4-digit SIC level, for the periods 1965-1996. Plants are labeled as being in high 

technology industries if the coefficient of the time variable is in the highest 20 percent of 

all industry estimates and otherwise in low technology industries. The number of plants 

so classified is 3,965 in low and 2,451 in high technology industries. The results with this 

classification are designated as equation (ii) in Table 3.  

Table 3 strongly supports our hypothesis that complementarity of human and 

physical capital is higher in high technology industries than in low technology industries. 

The results in Table 3 indicate that all the coefficients of the explanatory variables are  
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Table 3 

Technological Intensiveness and The Explanation of Demand for Human Capital* 

 
Demand for Human Capital 

(i) (ii) 
Independent 

Variables 
Low Tech High Tech Low Tech High Tech 

 
Intercept 
 
Age 
 
Age2 

 
Vintage 
 
Log (k) 
 
Log (w) 
 
Log (y) 
 
Log (l) 
 
Northeast 
 
Midwest 
 
South 
 
 

2R  

 
2.8188 
(45.70) 
0.0194 
(11.68) 
-0.0003 
(-3.48) 
0.0239 
(29.43) 
0.0667 
(45.70) 
0.5933 
(66.58) 
0.0376 
(20.82) 
0.1024 
(34.70) 
-0.0213 
(-3.01) 

-0.0746 
(-10.28) 
-0.1309 
(-19.98) 

 
0.68 

3.0521
(26.69)
0.0053
(2.38)

0.0002
(1.61)

0.0257
(20.37)
0.0741
(37.79)
0.5622
(34.65)
0.0434
(22.85)
0.1469
(35.04)
-0.0408
(-4.40)

-0.0684
(-7.75)

-0.0960
(-11.33)

0.68

 
3.0616 
(47.65) 
0.0208 
(12.60) 
-0.0004 
(-4.07) 
0.0264 
(32.26) 
0.0582 
(39.31) 
0.5599 
(60.57) 
0.0338 
(18.98) 
0.1230 
(41.13) 
-0.0232 
(-3.30) 

-0.0595 
(-8.26) 

-0.1143 
(-17.40) 

 
0.69 

 
3.1891 
(35.09) 
0.0095 
(4.43) 

0.0001 
(0.90) 

0.0248 
(21.40) 
0.0884 
(45.86) 
0.5400 
(41.59) 
0.0449 
(22.37) 
0.0962 
(24.62) 
-0.0268 
(-2.89) 

-0.0921 
(-10.34) 
-0.1201 
(-14.41) 

 
0.67

 
* Estimates are based on data from the LRD at the U.S. Bureau of the Census. 
Heteroskedasticity-corrected t-values are in parentheses. 
Dependant variable is log (average wage). The classification of high and low technology in equation (i) is 
based on 3-digit SIC data on the proportion of total employment in R&D, as shown in Hadlock, Hecker and 
Gannon (1991). The sample consists of 4,317 and 1,787 plants, respectively, for low and high technology 
industries. The classification of high and low technology in equation (ii) is based on the coefficient of the 
time variable for equation (12). Plants are classified in high technology industries if the coefficient is in the 
highest 20 percent of all industry estimates and otherwise in low technology industries.  The sample 
consists of 3,965 and 2,451 plants, respectively, for low and high technology industries. All the 
independent variables are as defined in Table 2. 
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associated with high t-values and are quite stable across alternative specifications. These 

results may be summarized as follows: 

(a) Plants in high technology industries are associated with greater complementarity 

between human and physical capital than those in low technology industries. When the 

technology index is proxied by the coefficient of the time variable (equation (ii) in Table 

3), complementarity of human and physical capital appears even stronger for the high 

technology and vise-versa for the low technology industries than when it is proxied by 

proportion of total employment in R&D. 

(b) Learning-by-doing and experience contribute more to the accumulation of human 

capital in low technology industries. This is consistent with the intuition that there is 

more to be gained from experience when technology is stable than when changes in 

technology render past experience obsolete. 

(c) The effect of vintage of physical capital on the demand for human capital seems to be 

very similar across the two sets of industries, contrary to our prediction.   

(d) The impact of plant size on the demand for human capital is stronger in high 

technology industries. This is consistent with the findings of Dunne and Schmitz (1995) 

of a positive relation among the three variables (wages, plant size and technology use), 

and of Oi (2000) who says, "The adoption of advanced technologies allegedly prompted 

big firms to hire more skilled workers which contributed to the size-wage effect" (p.10).  

  

IV. Conclusions 

We have proposed a model for explaining the demand for human capital based on a 

production function with human capital as an explicit argument in the function. The 
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resulting estimates show there is strong complementarity between human and physical 

capital. Moreover, the complementarity is greater in high technology than in low 

technology industries. The results indicate that plants with physical capital of more recent 

vintage are associated with a higher demand for human capital. These conclusions 

generally support the view that technical change leads to a skill bias in the demand for 

labor. 

 The age and experience of a plant contribute to a plant’s accumulation of human 

capital. However, input augmentation through learning-by-doing is more pronounced in 

low technology industries. It is in these industries that experience raises wages most. This 

is consistent with the intuition that the past has greater relevance for the future when 

technology changes more slowly. 
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